Cyanobacteria could support future Martian explorers

Spread the love

Researchers at the University of Bremen, Germany, cultivated cyanobacteria at low pressure using only Martian materials. Ultimately, this type of technology could allow the creation of oxygen allowing the support of the first Martian explorers.

Several agencies and companies such as NASA or SpaceX aim to establish themselves on Mars over the next few years. Given the means of propulsion available and the celestial mechanics bringing the Earth and Mars closer every twenty-six months approximately, we must keep in mind that the first humans to land on the red planet will remain there for many months before hoping to return to Earth.

This is obviously a major obstacle, as simply bringing enough supplies for a mission that could last more than two years would be disproportionately expensive. In fact, the more weight there is to lift, the more fuel is available.

Thus, future Martian explorers will have to rely on local resources as much as possible. This is why mission planners must already develop ways to grow food on Mars to supplement cargo rations or to obtain oxygen..

Cultivating cyanobacteria

With this in mind, researchers at the Center for Applied Space Technology (ZARM) at the University of Bremen, Germany, looked at cyanobacteria. On Earth, trees usually get all the credit for producing oxygen (a byproduct of photosynthesis). However, in reality, it is these bacteria that do the “heavy lifting”.

On Mars, these organisms could also produce oxygen, but also fix atmospheric nitrogen in sugars, amino acids and other nutrients capable of supporting the culture of food.

Of course, the Martian environment is a bit special. The atmospheric pressure of the red planet is indeed only 1% of that found on Earth. However, it is too low to allow the presence of liquid water on the surface in which these algae could develop.

To overcome this, the team produced a bioreactor named ATMOS (Atmosphere Tester for Mars-bound Organic Systems) consisting of nine sterile one-liter glass and steel vessels, heated and controlled to create a pressure equivalent to 10% of that of the Earth. Inside, cyanobacteria (Anabaena) were introduced into a mixture of 4% carbon dioxide and 96% nitrogen with an artificial Martian regolith containing nutrients including phosphorus, sulfur and calcium.

The ATMOS bioreactor. Credits: Verseux / ZARM

Encouraging results

The team tested the reactor with a specific species of nitrogen-fixing cyanobacteria that could thrive under these conditions. And the results have been positive. The cyanobacteria did indeed thrive less than in a standard terrestrial environment, naturally, but they responded well to this simulated environment. In other words, it could therefore be possible to grow them on Mars by relying on local and non-imported resources.

Of course, this is only a proof of concept. Further research will therefore be necessary to refine the technology. “Our bioreactor is not the culture system we would use on Mars“, Notes Cyprien Verseux, who heads this work. “In contrast, our results will help guide the design of a Martian culture system.“.

Details of the study are published in Frontiers in microbiology.

Source link